skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hightower, Asia T"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract PremiseStudies into the evolution and development of leaf shape have connected variation in plant form, function, and fitness. For species with consistent leaf margin features, patterns in leaf architecture are related to both biotic and abiotic factors. However, for species with inconsistent leaf shapes, quantifying variation in leaf shape and the effects of environmental factors on leaf shape has proven challenging. MethodsTo investigate leaf shape variation in a species with inconsistently shaped leaves, we used geometric morphometric modeling and deterministic techniques to analyze approximately 500 digitized specimens ofCapsella bursa‐pastoriscollected throughout the continental United States over 100 years. We generated a morphospace of the leaf shapes and modeled leaf shape as a function of environment and time. ResultsLeaf shape variation ofC. bursa‐pastoriswas strongly associated with temperature over its growing season, with lobing decreasing as temperature increased. While we expected to see changes in variation over time, our results show that the level of leaf shape variation was consistent over the 100 years. ConclusionsOur findings showed that species with inconsistent leaf shape variation can be quantified using geometric morphometric modeling techniques and that temperature is the main environmental factor influencing leaf shape variation. 
    more » « less
  2. Abstract PremiseThe selection ofArabidopsisas a model organism played a pivotal role in advancing genomic science. The competing frameworks to select an agricultural‐ or ecological‐based model species were rejected, in favor of building knowledge in a species that would facilitate genome‐enabled research. MethodsHere, we examine the ability of models based onArabidopsisgene expression data to predict tissue identity in other flowering plants. Comparing different machine learning algorithms, models trained and tested onArabidopsisdata achieved near perfect precision and recall values, whereas when tissue identity is predicted across the flowering plants using models trained onArabidopsisdata, precision values range from 0.69 to 0.74 and recall from 0.54 to 0.64. ResultsThe identity of belowground tissue can be predicted more accurately than other tissue types, and the ability to predict tissue identity is not correlated with phylogenetic distance fromArabidopsis.k‐nearest neighbors is the most successful algorithm, suggesting that gene expression signatures, rather than marker genes, are more valuable to create models for tissue and cell type prediction in plants. DiscussionOur data‐driven results highlight that the assertion that knowledge fromArabidopsisis translatable to other plants is not always true. Considering the current landscape of abundant sequencing data, we should reevaluate the scientific emphasis onArabidopsisand prioritize plant diversity. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026